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Abstract

Hackenbush is one of the most visual demonstrations of the link between surreal
numbers and their arithmetic and combinatorial games. Addition for the case of
stalks, and the more general hackenbush trees, often doesn’t need the translation
to surreals to be computed. This paper develops an algorithm for addition and
multiplication on RBG hackenbush stalks, and shows how trees can be simpli�ed
to stalks. Most RBG trees have values that are not surreal numbers, but have
an invariant called the mean value that is surreal. I prove a theorem about the
mean value of RBG hackenbush trees, and show how a player can compute their
best strategy.
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Chapter 1

Introduction

Hackenbush is a game invented by John Conway and is often used to introduce
the connection between combinatorial games and surreal numbers. Hackenbush
is a convenient way to show how adding two games is equivalent to adding



Figure 1.1:

Figure 1.2: Hackenbush stalks
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Chapter 2

Background

Hackenbush is a two-player game where the players alternate removing edges
from a graph or collection of graphs. Typically the players are called Left and
Right. The edges are all colored red, blue, or green, and one vertex is regarded
as the ground, which is represented as a line at the bottom. All edges have
a path to the ground. The left player can only cut blue edges and the right
player can only cut red edges. Either player can cut a green edge. After each
move, edges that are not connected to the ground are no longer in play. For
example, examine the boy in �gure 1.1. If right removes the boy’s hand, the
rest of the ballon will no longer be available to right after that move. The loser
in this game is the player who has no more moves to make on their turn. For
simplicity, this paper refers to a hackenbush game with only red and blue edges
as RB Hackenbush, and hackenbush games that include green edges as RBG
Hackenbush.

Hackenbush is a common example of a combinatorial game. Most texts
de�ne a combinatorial game similiarly to Richard Nowakowski, from his book
Games of No chance:

1. There are two players moving alternately;

2. There are no chance devices and both players have perfect information;

3. The rules are such that the game must eventually end; and

4. There are no draws, and the winner is determined by who moves last.

The study of the structure of combinatorial games, and the methods used to
�gure out the outcome of a game, are the focus of a branch of mathematics called
Combinatorial Game Theory. While humans have been playing and studying
games for hundreds if not thousands of years, the modern study of Combinatorial
Game Theory began with John Conway. He invented a class of numbers, called
the surreal numbers, that are all values of certain combinatorial games. Not all
games are surreal numbers, however. Hackenbush is the standard for introducing
the connection between surreal numbers and other game values and outcomes
of certain hackenbush games.
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Figure 2.1: The Empty Game

advantage for right cancel each other out. This is an informal example of why
1 + (�1) = 0 in hackenbush stalks.

Red-Blue hackenbush stalks can be used to represent the surreal numbers.
A surreal number is an ordered pair of sets of previously created surreal
numbers. The sets are known as the left set and the right set. No member of
the right set may be less than or equal to any member of the left set. When
green edges are introduced, they violate the conditions of surreal numbers. It
is still possible to study these game values, and they do form a partial ordering
with the surreal numbers.

The method used to create these numbers hints at a hierarchy in the surreals.
The �rst surreal number is 0, or ==. Next, the numbers 1 and �1 can be
constructed, as f0jg and fj0g, respectively. The following surreal numbers that
can be created are 2 = f0; 1jg; 1=2 = f0j1g;�2 = fj0;�1g;�1=2 = f�1j0g.
Because 0 was constructed before the other numbers, it is said to be simpler than
all the other surreals. Similarly, 1 is simpler than 2 and 1=2 is simpler than 3.
The method to �nd the simplest number between two values is called Simplicity
Rule. This is �nding either the smallest integer between the two, or else the
fraction between them having the highest power of two in the denominator. In
this way simplest means the surreal number constructed earliest.

The �gure below shows the beginning of the surreals and their ‘birthday’,
the order in which they can be constructed.

A single green edge is notated �, pronounced star. Both left and right can
remove a green edge, so � = f0j0g. The outcome of � is a �rst-player win,
so � 6= 0. Surprisingly, � + � = 0, and it can be shown that � is less than
any positive surreal number, and greater than any negative number. For these
reasons, it is often said that star is confused with zero. In the class of game
values they are incomparable, but they have some similar characteristics.

Even though RBG hackenbush positions are not numbers, it is still possible
to de�ne how much a move on any game is worth.

De�nition: A Left incentive of a game G is denoted �L(G), and is a
game of the form GL�G. A Right incentive of a game G is denoted �R(G),
and is a game of the form G�GR.

The following are some results from Siegal, which will be used in the next
section.

Proposition 1: If x is a number, xL; xR are any members of the left and
right set of x, then xL < x < xR. In particular, every incentive of x is negative.

Proposition 2: If G is not a number, then G has both a left incentive
�L(G) and a right incentive �R(G) such that
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Figure 2.2:
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�L(G) � �x and �R(G) � �x for every number x > 0.

Number Avoidance Theorem: Suppose that x is equal to a number and
G is not. If Left (resp. Right) has a winning move on G + x, then he has a
winning move of the form GL + x (resp. GR + x).

Proof : Suppose left has a winning move of the form G+xL. Then certainly
G + xL � 0> But G is not equal to a number, so G + xL > 0. Therefore left
has a winning move on G + xL. By induction on x, this move has the form
GL + xL, so that GL + xL � 0. Since x is a number, xL < x, and in fact
GL + x > GL + xL � 0.

If G is a hackenbush game, and not a number, eventually all green edges
will be cut and a subposition of G will be a number x. Assuming left or right
goes �rst, and both play optimally, each player can guarantee an invariant on
G, named the left stop and right stop.

De�nition: The Left stop L(G) and the right stop R(G) are de�ned recur-
sively by
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Chapter 3

My results

The main result that has motivated this paper is stated below. This section will
outline the main ideas of the proof and then go through the details.

Theorem: The mean value of any RBG hackenbush tree is the simplest
number between the tightest bound obtained by replacing green edges with red
and blue edges.

It is easier to prove that a similar result holds for a particular subset of RBG
stalks instead of trees, which will outline a method of proof that will be repeated
throughout this section. Using propositions from other sources, the method of
proof can be generalized to all RBG stalks and �nally RBG trees.

The particular type of RBG stalks are those that have exactly one green
edge at the end of the stalk, or with the furthest path from the ground.

First, it is important to remember that any player has an incentive to remove
these top green edges when available. If k is a number, by Proposition 1 every
incentive of k



If x > 0, then left will have the most advantage by removing the green edge.
The argument is similar to the case for x < 0, but replacing right with left, red
with blue, and the equation for incentives to �L(G) = GL �G. �

If the stalk is negative like in the proof, it is important to remember that
right has a winning move by removing the bottom edge for this game, and
leaving left with no moves. The best move is not necessary the winning move,
because the best move will leave the greatest advantage to right in the context
of other games. This idea will be important in the proof of the mean value of
RBG stalks.

Lemma 2: The mean value of a RBG stalk with one green edge on top is
the number obtained from removing the green edge.

Proof : The mean value of a game G is de�ned as limn!1
L(n�G)

n , where
L(n�G) is the left stop of n copies of G. The left stop x is a surreal number,
and can be thought of as the �nal score after left and right alternate playing
on n � G, with left moving �rst. The game n � G is n copies of G. Assume
the value of the RB stalk is positive, or equivalently that x > 0. So when left
starts, she will remove any green edge, from the �rst lemma. Right will make a
move, and will want to preserve as many moves as possible, so will cut another
green edge. On left’s next move, he will remove another green edge, because of
the number avoidance theorem. Eventually all green edges will be cut, and the
left stop is the number represented by the RB stalk times n. This process holds
for all values of n, so the mean value is x, the number obtained from removing
the green edge. �

This can be extended to any RBG stalk. The proof is similar to the one
above so won’t be fully written out. A concept from the book Winning Ways,
an early introduction to Combinatorial Game Theory will be needed in the
argument. It is reworded below to better �t the subset of Hackenbush positions
this paper deals with.

Corollary 1: No sane person will chop an edge beneath the green edge that
is closest to the ground while there’s any other edge to chop.

So to prove the mean value of a RBG stalk, H, is the simplest number
between the tightest bound obtained by replacing green edges with red and
blue edges, it is enough to prove that the left stop of n copies of H is n times
whatever surreal number forms the "base" below any green edges. The simplest
number between the tightest bound when green edges are replaced by red and



the left stop of H is x.
The �nal theorem uses the concept from corollary 1 in the last proof, but it

should be rewritten to �t the tree terminology.
Corollary 2: No sane person will chop an edge in the Red-Blue subtree (?)

while there’s another edge to chop.
This corollary will be used in the same way as in the proof of the mean value

of RBG stalks.
As hinted above, the mean value will be the value of the sub-tree of red-blue

edges. That is, the largest graph started from the ground and stopping, on all
branches, just before the �rst green edge on all branches. The proof will show
that the value of the sub-tree is indeed the mean value, and also the simplest
number between the tightest bound obtained by replacing green edges with red
and blue edges.

Here is the theorem restated followed by a formal proof:
Mean Value Theorem For RBG Hackenbush Trees: The mean value

of any RBG hackenbush tree is the simplest number between the tightest bound
obtained by replacing green edges with red and blue edges.

Proof :
Let G be an arbitrary RBG hackenbush tree, and x the number that is the

value of the Red-Blue subtree. If the left stop (or right stop) for n copies of G
is n� x for any positive integer n, then the mean value of G is x, by de�nition.

Suppose there are n copies of G and G > 0. By corollary 2, left will move
on some edge not in the red-blue subtree x of some copy of G. Right will move
the same way for the same reason. Eventually, a copy of G will be reduced to x.
Left and right both have negative incentives if they move on x. If either player
cuts an edge above a green on any particular branch of another copy of G, their
incentive will be confused with zero, but still greater than any negative number.
This process continues until all copies of G are reduced to x, giving n�x as the
left stop for any n. Therefore, x is the mean value of G.

Now all there is to show is that the mean value is the simplest number
between the tightest bound obtained by replacing green edges with red and blue
edges. Take the green edges that separate x from the rest of game G. These
edges will start subtrees on G on multiple branches of G. Consider one of these
branches. The simplest number obtained by replacing the green edges with blue
or red will be the value of the red-blue branch before the �rst green edge. This
idea was shown in a previous proof. The branch is shorter, so will necessarilly
be the simplest number. Since the simplest number within the bounds for each
branch is the value of that branch, applying the replacement algorithm across
the whole tree will give the desired upper and lower bounds that have the mean
value as the simplest number between them. �

The tightest bound computation may seem redundant, but it will be neces-
sary for a player (or computer) to �nd the values that are possible when choosing
which green edges to cut. The mean value is not necessarily the actual value
that will happen for an optimal strategy, and in the context of other games,
left or right may want to cut lower or higher green edges to force the other
player to move a certain way. It can also simplify certain calculations. For
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example, take a game that is two di�erent RBG trees, one with 3 green edges
and the other with more than 3. Based on the coloring of the trees, right may
have less incentive to move on the tree with 3 green for at least 3 moves. Left
could claim these edges, essentially "coloring" them blue, and giving that tree
a number value. Numbers are easier to work with computationally than other
game values found in hackenbush.
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