### Solving the Bioheat Equation for

## Electrophysiology

- The study of the body's electric activity Can be small-scale (individual cells) or largescale (entire organs)
- Electrophysiology often plays an important role in medical diagnostic procedures
   Ex: ECG, EEG, EMG
- Signals often recorded by placing a series of electrodes on the surface of a patient's skin Not always a practical approach—long-term collection of data may be required

### A Possible Solution

 A subcutaneous (under the skin) recording device could remain in place semi-permanently Device may be implanted almost anywhere in a minor surgical procedure



Schematic of proposed device



Figure created by Zachary Abzug

### Transcutaneous Recharging

- Most implanted devices recharged via magnetic fields—not feasible for this device
- Instead, induce high frequency electric field using external source and sink electrodes



Figure created by Zachary Abzug

### Project Objective

• Derive a closed-form solution for the anticipated temperature increase

Primary motivation: improved understanding of physical parameters on temperature increase

# The "Extended" Bioheat Equation $\rho C \frac{\partial T}{\partial t} = k \nabla^2 T + \rho_b C_b \omega_b (T_b - T) + Q_{met} + J \cdot E$

<u>The heat equation</u>: describes variation of

### Power Dissipation

 Calculate the work done by electromagnetic forces on a charge Q moving some infinitesimal distance dl:

### Simplifying the Bioheat Equation

Must make several simplifications

$$\rho C \frac{\partial T}{\partial t} = k \nabla^2 T + \rho_b C_b \omega_b (T_b - T) + Q_{met} + J \cdot E$$

Steady-state solution(

Ignore perfusion()

Ignore metabolic heat production(

• Final equation to solve:

### A Previous Solution

### Geometric Considerations

- Treat electrode as a current-producing sphere in an infinite homogeneous and isotropic resistive material
- Second electrode is at infinity (V=0)



### A Solution in Spherical Coordinates

 Write bioheat equation in spherical coordinates Ignore and .



### Solving Laplace's Equation

 To determine A, consider a point source of current in an infinite, homogeneous, isotropic medium.

The current density is:  $I = \frac{I}{4\pi r^2} \hat{r}$ 

Since 
$$I = \sigma E = -\sigma V V$$
, the potential is:  
 $VV = -\frac{l}{4\pi\sigma r^2} \hat{r} \longrightarrow \frac{dV}{dr} = -\frac{l}{4\pi\sigma r^2} \longrightarrow V(r) = \frac{l}{4\pi\sigma r}$   
Compare to  $V(r) = -\frac{A}{r} \longrightarrow A = -\frac{l}{4\pi\sigma}$ 

### Solving the Bioheat Equation



### The Particular Solution

• To use variation of parameters, rewrite as:

$$y'' + \frac{2}{x}y' = \frac{c}{x^4}$$

• The solution is given by  $y_p = u_1y_1 + u_2y_2$ , where  $y_1$ and  $y_2$  are from the complimentary function and



### The General Solution

• The general solution is the sum of the complimentary function and the particular solution:  $y = y + y = \alpha + \frac{\beta}{2} + \frac{c}{2}$ 

$$y = y_c + y_p = \alpha + \frac{\beta}{x} + \frac{c}{2x^2}$$
$$T(r) = \alpha + \frac{\beta}{r} + \frac{c}{2r^2}$$
$$T(r) = \alpha + \frac{\beta}{r} - \left(\frac{I}{4\pi}\right)^2 \frac{1}{2k\sigma r^2}$$

Plugging this back into the bioheat equation verifies that it is a solution

### The General Solution

• The solution is also valid in terms of units

| Quantity | Unit    |
|----------|---------|
| Ι        | А       |
| k        | A/V*m   |
|          | V*A/m*K |
|          | K       |
|          | K*m     |

• Need to determine and

### Determining

### • Assume the tissue is unaffected by heating at an

### Determining

#### • The solution for temperature is:

A plot of temperature vs. radial distance from electrode (I = 11.7 mA, = 0.327 A/V \*m, k = 0.565 W/m \*K, r<sub>0</sub> = 0.635 mm).

### Sensitivity to r<sub>0</sub>

### Behavior of solution is highly dependent on r<sub>o</sub>

Dependence of temperature on r<sub>o</sub>

### Future Work

- What is the *physical* meaning of the solution?
- The temperature distribution is

Or  

$$T(r) = 310.15 + \frac{A}{r_0 r} - \frac{A}{2r^2}$$
 (where  $A = \left(\frac{I}{4\pi}\right)^2 \frac{1}{k\sigma}$ )

What does it mean to have two similar terms competing?

### Conclusions

- Recharging a subcutaneous medical device using electric fields can increase tissue temperature
- We show that the steady-state temperature distribution is given by  $T(r) = 310.15 + \frac{\beta}{r} \left(\frac{l}{4\pi}\right)^2 \frac{1}{2k\sigma r^2}$
- Future work: investigate how physical parameters influence temperature increase



### References

#### [1] Elwassif, Maged M., Qingjun Kong, Maribel Vazquez, and Marom Bikson, "Bio-

### Questions?

### Extra Slides





### The Heat Equation

• The heat equation describes the threedimensional variation of temperature in a region as a function of time

$$\rho C \frac{\partial T}{\partial t} = k \nabla^2 T$$

- = densityC = specific heatk = thermal conductivity
- Not a complete model of heat transfer in biological situations due to perfusion (blood flow)

### The Bioheat Equation

• The rate of heat transfer between blood and tissue is proportional to:

The volumetric perfusion rate

The difference between the arterial blood temperature and the local temperature

- Also add term (Qmet) to account for metabolic heat production
- The bioheat equation is:

$$\rho C \frac{\partial T}{\partial t} = k \nabla^2 T + \rho_b C_b \omega_b (T_b - T) + Q_{max}$$

 $\begin{array}{ll} {}_{b} = density \ of \ blood \\ C_{b} = specific \ heat \ of \ blood \\ T_{b} = temperature \ of \ blood \end{array} \qquad b = perfusion \ rate \ per \ unit \ volume \ of \ tissue \\ T = local \ tissue \ temperature \\ \end{array}$ 

### A Solution in Cylindrical Coordinates





Cylindrical coordinate system (image from uic.edu)

Wrote Laplacian in cylindrical coordinates, ignoring and z dependence due to geometry  $\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial T}{\partial r}\right) = -\frac{\sigma}{k}|\nabla V|^2$ 

### A Solution in Cylindrical Coordinates

- For our analysis, model head as infinitely wide and deep homogeneous resistive material
- Place one electrode on surface (V=V<sub>applied</sub>) and one electrode at infinity (V=0)



- It's acceptable to ignore dependence in our situation because of the axial symmetry
- Problem: we cannot ignore *z* dependence

### Determining – Approach #1

Want to know how the temperature behaves at

### Determining – Approach #1

A plot of temperature vs. radial distance from electrode (I = 11.7 mA, = 0.327 A/V \*m, k = 0.565 W/m \*K, r<sub>0</sub> = 0.635 mm).

### Determining – Approach #1

A plot of temperature vs. radial distance from electrode (I = 11.7 mA, = 0.327 A/V \*m, k = 0.565 W/m \*K, r<sub>0</sub> = 0.635 mm).

### Temperature Peak

\*\*\*\*\*

### Temperature Peak

- Would like to account for the peak in temperature
- Remember solution is of the form:  $T(r) = \alpha + \frac{\beta}{r} + \frac{c}{2r^2}$



A plot of comparing the contribution of the /r and c/2r<sup>2</sup> terms