Solving the Bioheat Equation for

Electrophysiology

- The study of the body's electric activity Can be small-scale (individual cells) or largescale (entire organs)
- Electrophysiology often plays an important role in medical diagnostic procedures Ex: ECG, EEG, EMG
- Signals often recorded by placing a series of electrodes on the surface of a patient's skin Not always a practical approach—long-term collection of data may be required

A Possible Solution

• A subcutaneous (under the skin) recording device could remain in place semi-permanently Device may be implanted almost anywhere in a minor surgical procedure

Schematic of proposed device

Figure created by Zachary Abzug

Transcutaneous Recharging

- Most implanted devices recharged via magnetic fields—not feasible for this device
- Instead, induce high frequency electric field using external source and sink electrodes

Figure created by Zachary Abzug

Project Objective

• Derive a closed-form solution for the anticipated temperature increase

Primary motivation: improved understanding of physical parameters on temperature increase

The "Extended" Bioheat Equation $\rho C \frac{\partial T}{\partial t} = k \nabla^2 T + \rho_b C_b \omega_b (T_b - T) + Q_{met} + J \cdot E$

The heat equation: describes variation of

Power Dissipation

•

• Calculate the work done by electromagnetic forces on a charge Q moving some infinitesimal distance dl:

Simplifying the Bioheat Equation

• Must make several simplifications

$$
\rho C \frac{\partial T}{\partial t} = k \nabla^2 T + \rho_b C_b \omega_b (T_b - T) + Q_{met} + J \cdot E
$$

Steady-state solution()

Ignore perfusion()

Ignore metabolic heat production()

• Final equation to solve:

A Previous Solution

Geometric Considerations

- Treat electrode as a current-producing sphere in an infinite homogeneous and isotropic resistive material
- Second electrode is at infinity $(V=0)$

A Solution in Spherical Coordinates

• Write bioheat equation in spherical coordinates Ignore and employed and

Solving Laplace's Equation

• To determine A, consider a point source of current in an infinite, homogeneous, isotropic medium.

The current density is: $J = \frac{I}{4\pi r^2} \hat{r}$

Since
$$
\mathbf{I} = \sigma \mathbf{E} = -\sigma \mathbf{V} \mathbf{V}
$$
, the potential is:
\n
$$
\mathbf{V} \mathbf{V} = -\frac{I}{4\pi \sigma r^2} \hat{\mathbf{r}} \qquad \frac{dV}{dr} = -\frac{I}{4\pi \sigma r^2} \qquad \mathbf{V}(\mathbf{r}) = \frac{I}{4\pi \sigma r}
$$
\nCompare to $V(r) = -\frac{A}{r} \qquad A = -\frac{I}{4\pi \sigma}$

Solving the Bioheat Equation

The Particular Solution

• To use variation of parameters, rewrite as:

$$
y'' + \frac{2}{x}y' = \frac{c}{x^4}
$$

• The solution is given by $y_p = u_1 y_1 + u_2 y_2$, where y_1 and y_2 are from the complimentary function and

The General Solution

• The general solution is the sum of the complimentary function and the particular solution:

$$
y = y_c + y_p = \alpha + \frac{\beta}{x} + \frac{c}{2x^2}
$$

$$
T(r) = \alpha + \frac{\beta}{r} + \frac{c}{2r^2}
$$

$$
T(r) = \alpha + \frac{\beta}{r} - \left(\frac{l}{4\pi}\right)^2 \frac{1}{2k\sigma r^2}
$$

• Plugging this back into the bioheat equation verifies that it is a solution

The General Solution

• The solution is also valid in terms of units

• Need to determine and

Determining

• Assume the tissue is unaffected by heating at an

Determining

• The solution for temperature is:

ermining

e solution for temperature is:

A plot of temperature vs. radial distance from electrode (I = 11.7 mA,

- 0.327A/Y*m, k - 0.565 W/m⁺K, r_o = 0.635 mm). $= 0.327 \text{ A/V}$ *m, k = 0.565 W/m*K, r₀ = 0.635 mm).

Sensitivity to r_0

• Behavior of solution is highly dependent on r_0

Dependence of temperature on r_0

Future Work

- What is the *physical* meaning of the solution?
- The temperature distribution is

or

$$
T(r) = 310.15 + \frac{A}{r_0 r} - \frac{A}{2r^2}
$$
 (where $A = \left(\frac{l}{4\pi}\right)^2 \frac{1}{k\sigma}$)

• What does it mean to have two similar terms competing?

Conclusions

- Recharging a subcutaneous medical device using electric fields can increase tissue temperature
- We show that the steady-state temperature distribution is given by $\overline{r}(r) = 310.15 + \frac{\beta}{r} - \left(\frac{I}{4\pi}\right)^2 \frac{1}{2k\pi r^2}$
- Future work: investigate how physical parameters influence temperature increase

References

[1] Elwassif, Maged M., Qingjun Kong, Maribel Vazquez, and Marom Bikson, "Bio-

Questions?

Extra Slides

The Heat Equation

• The heat equation describes the threedimensional variation of temperature in a region as a function of time

$$
\rho C \frac{\partial T}{\partial t} = k \nabla^2 T
$$

- = density $C =$ specific heat $k =$ thermal conductivity
- Not a complete model of heat transfer in biological situations due to perfusion (blood flow)

The Bioheat Equation

The rate of heat transfer between blood and tissue is proportional to:

The volumetric perfusion rate

The difference between the arterial blood temperature and the local temperature

- Also add term (Qmet) to account for metabolic heat production
- The bioheat equation is:

$$
\rho C \frac{\partial T}{\partial t} = kV^2T + \rho_b C_b \omega_b (T_b - T) + Q_{\text{max}}
$$

 $b =$ density of blood C_b = specific heat of blood $T_b =$ temperature of blood $b =$ perfusion rate per unit volume of tissue $T =$ local tissue temperature

A Solution in Cylindrical Coordinates

Cylindrical coordinate system (image from uic.edu)

Wrote Laplacian in cylindrical coordinates, ignoring and z dependence due to geometry $\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial T}{\partial r}\right) = -\frac{\sigma}{k}|\nabla V|^2$

A Solution in Cylindrical Coordinates

- For our analysis, model head as infinitely wide and deep homogeneous resistive material
- Place one electrode on surface (V=Vapplied) and one electrode at infinity $(V=0)$

- It's acceptable to ignore dependence in our situation because of the axial symmetry
- Problem: we cannot ignore *z* dependence

Determining – Approach #1

• Want to know how the temperature behaves at

Determining – Approach #1

A plot of temperature vs. radial distance from electrode ($I = 11.7$ mA, = 0.327 A /V $*m$, k = 0.565 W /m $*K$, r₀ = 0.635 mm).

Determining – Approach #1

A plot of temperature vs. radial distance from electrode ($I = 11.7$ mA, = 0.327 A /V $*m$, k = 0.565 W /m $*K$, r₀ = 0.635 mm).

Temperature Peak

Temperature Peak

- Would like to account for the peak in temperature
- Remember solution is of the form: $\mathbf{r}(r) = \alpha + \frac{\beta}{r} + \frac{c}{2r^2}$

A plot of comparing the contribution of the /r and c/2r² terms